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The potential energy clock (PEC) model for glassy polymers derived previously was shown to predict
accurately a broad range of responses including temperature-dependent yield in different modes of
deformation, enthalpy relaxation, volume recovery, and aging of the yield stress. It was, however,
somewhat difficult to parameterize and employ computationally, and these points may affect its
implementation and use. To facilitate acceptance, the model has been greatly simplified by keeping only
necessary terms and employing some approximations. The resulting simplified potential energy clock
(SPEC) model is quite easily computed and parameterized, yet faithfully reproduces the predictions of the
full potential energy clock model implying that experimental responses are still accurately predicted.
Such comparisons between the new model, old model, and data are presented as well as new predictions
for creep. Again, the predictions are in good agreement with the experimental data.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Glassy polymers behave viscoelastically. Relaxation rates
measured by volume recovery or tensile creep continuously slow as
the test temperature decreases below the nominal glass transition
temperature, Tg. For polymers cooled quickly below Tg, these
relaxation rates slow even at constant temperature as the polymer
lethargically strives for equilibrium, leading to numerous
phenomena lumped under the heading of ‘‘physical aging’’. Glassy
polymers are not simply viscoelastic but are nonlinear viscoelastic.
Creep rates increase at constant temperature as the applied stress
increases, and volumetric relaxation rates depend on the entire
volume history.

Theorists have attempted to construct viscoelastic models of
glassy polymer response for decades. A number of obstacles have
prevented these approaches from being widely applied. First and
foremost, many theories attempt to describe only selected pieces
of the varied behavior of glassy polymers. For example, free
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volume [1] and configurational entropy [2] theories, in structure,
can predict volume recovery but do not predict the existence of
compressive yield. Engineering applications using these models
may not require inordinately accurate predictions but need to be
‘‘close’’ (say, to within 20% or so) on all predictions to enable
design modifications, so exactly predicting room temperature
tensile yield while failing to predict any compressive yield would
be unacceptable. Even for those models that do attempt
comprehensive predictive capability [3], corresponding
comprehensive data are lacking. Ideally, one would prefer
volumetric, creep, yield, and enthalphic data on a single system
with known thermal histories. More detailed descriptions of
available viscoelastic theories of glassy polymers with their
strengths and weaknesses can be found in our previous publi-
cations [4].

In these previous articles [4–7], we developed a nonlinear
viscoelastic theory for glassy polymers incorporating two features
that enabled comprehensive engineering predictions: use of the
logarithmic Hencky strain measure and a novel ‘‘material clock’’
describing the dependence of all relaxation rates on environmental
conditions that is based on the potential energy of the system.
While seemingly trivial, use of the Hencky strain measure avoided
volumetric inconsistencies, which was critically important for
glassy polymers whose relaxation rates depend sensitively on
volume. The key feature of the new model, however, was use of the
‘‘potential energy clock’’. Since the formalism was based on
a Rational Mechanics approach, the potential energy could be
constructed consistently. The dependence of relaxation rates on the
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system potential energy was justified in equilibrated systems by
molecular dynamics simulations on simple chain molecules [8].
Chain, center-of-mass diffusion coefficients calculated at various
temperatures, densities, and pressures and normalized by
temperature to construct the mobility collapsed onto a unique
master curve when plotted against the system potential energy
density, Epot. Moreover, the viscoelastic shift factor, a (proportional
to the inverse mobility), apparently diverged at a critical value of
the potential energy density, Epot

c. The entire functional response
could be fit with either a generalized Vogel–Fulcher [9] (or equiv-
alently WLF) equation

a ¼ A1 exp

"
A2

Epot � Epot
c

#
(1)

or with a power law relationship reminiscent of critical phenomena

a ¼ A1

"
Epot � Epot

c

Epot
c

#�A2

(2)

where A1 and A2 are constants in both representations. Finite
element predictions using the model for temperature-dependent
volume, enthalpy, and yield (compressive and tensile) were in
good agreement with data on several systems [5]. Much richer
predictions were also shown to agree with data including the
dependence of compressive yield on aging time, enthalpy relax-
ation, and even coupled responses such as the response of the
apparent heat capacity for samples that had been previously
stressed to yield (enabled by a thermodynamically consistent
approach) [7].

While parameterization of the model was related to standard
characterization tests, the predictions, at times, were sensitive to
the values chosen. Loosely speaking, this sensitivity arose from
the very physical foundation of the model; the relaxation rates
were dependent on the potential energy of the system, which, in
turn, was dependent on the same parameters found in the
viscoelastic stress equation. Since the relaxation times were
exponentially dependent on the potential energy and, by defini-
tion, the viscoelastic relaxation functions were exponentially
dependent on the relaxation times, it may not be so surprising
that parameter sensitivities arose. These sensitivities were not
insurmountable, but we felt that the somewhat complex nature of
the equations and the effort required to fit the model accurately
might hinder its acceptance. Therefore, we undertook a program
to re-examine the model, keeping only those terms necessary for
accurate predictions and loosening the tight coupling between
clock and stress parameters when possible. In this paper, we
describe this process and explain how implementation of the
model and subsequent parameterization are now quite simple.
Comparison of the simpler model (called here the ‘‘Simplified
Potential Energy Clock’’, or SPEC) with both data and the previous,
complete model (called the ‘‘Potential Energy Clock’’, or PEC)
shows that predictive accuracy was not sacrificed. It is our hope
that these efforts will result in a greater willingness to use this
model for engineering calculations.

2. Previous theoretical development of the PEC model

Both PEC and SPEC models start from expansion of the Helm-
holtz free energy, J, in perturbations from an equilibrated state
that would exist at the current temperature, T, and density, r. The
resulting free energy for an isotropic, rheologically simple solid is
given by
J J
� � 1

J

Zt Zt �
* * * *

�dI1 dI1
¼ eq T;H þ
2 1

0 0
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J4
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0
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�
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�dT
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dT
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(3)

where H is the Hencky strain measure and I1 is its first invariant,
H : I (I2 would be the corresponding second invariant, H :H). The
Hencky first invariant, I1, is a function of volume only, which, as
stated above, avoids volumetric inconsistencies. The expansion
prefactors, J1–4, can depend on the current strain and tempera-
ture. The underlying equilibrated free energy can also be repre-
sented by a Taylor series in strain and temperature about an
arbitrary, equilibrated, reference state. The material time, t*, is
dependent on the potential energy of the system, Epot, which was
described by a generalized WLF equation

t* � s* ¼
Zt

s

dx
aðxÞ where log a ¼ �C1

2
4 Epot � Epot

ref

C02 þ Epot � Epot
ref

3
5 (4)

where C1 is identically the familiar WLF constant and C02 is related
to the other one.

All thermodynamic quantities can be found by examining the
first and second laws of thermodynamics in terms of the Helmholtz
free energy, J¼ E� Th, where E is the specific energy and h is the
specific entropy.

1st Law :
dE
dt
¼ dW

dt
þ Q where

dW
dt
¼

S

rref
:

d G

dt

2nd Law : Q ¼ T
dh

dt
� T

dhdiss

dt

such that
dJ

dt
¼
"

S

rref
:

d G

dt

#
�
�

h
dT
dt
þ T

dhdiss

dt

�
(5)

where S is the second Piola–Kirchoff stress and G is the Green–
Lagrange strain measure defined as 1=2ðF T F � I Þwith F being the
deformation gradient tensor. The use of G for the Green–Lagrange
strain measure instead of the more standard nomenclature, E , has
been adopted to avoid confusion with the scalar E representing
energy. Note that the dissipation rate, dhdiss/dt, must be positive.
The rate of change in the Helmholtz free energy then acts as
a potential for determining the stress, entropy, and dissipation rate.
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v H

	
T
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where s H is the conjugate stress of the Hencky strain. A more
rigorous derivation that follows the historical approach of Truesdell
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[10] is given in the first paper in this series [1], but the above
derivation is intuitively appealing.

The total specific energy can be calculated consistently by
E¼Jþ Th, where J and h are defined in Eqs. (3) and (6). The
potential energy is a fraction of the total energy; it can be
approximated, however, as detailed in Ref. [1]. Briefly, it was
assumed that isothermal volumetric jumps affected changes only
in the potential energy, so terms in the expansion of the total
energy that involved only volume were included in the potential
energy expansion. For isochoric temperature changes, it was
assumed that the kinetic energy contribution could be extracted
from the total energy by examining the instantaneous response
to the temperature jump. This procedure resulted in replacing all
prefactors of terms in the expansion of the equilibrated energy
involving temperature only with their negative ‘‘glassy’’ values
instead of the normal equilibrated values; for example, the
equilibrated constant volume heat capacity, CVN, would be
replaced by the negative of its decaying counterpart, –CVd. Limits
for the energy expansion cross terms that included both
temperature and volume were derived, and comparison of model
predictions with data using either of these two limits clearly
showed preference for one (again replacing equilibrated terms by
the corresponding negative glassy terms).

The resulting constitutive equation (in terms of the Cauchy
stress, s ¼ ðr=rref Þ F $ S $ F T , required for the momentum balance)
is given below.
s¼r
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where

t* � s* ¼
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The integral prefactors, J1–4, are respectively related but not
identically equal to the difference in the glassy and rubbery bulk
moduli (Kd¼ Kg� KN), the difference in the glassy and rubbery
shear moduli (Gd¼Gg�GN), the difference in the glassy and
rubbery products of K and the coefficient of thermal expansion,
a (Ld¼ Kgag� KNaN), and the difference in the glassy and rubbery
specific heat capacities at constant volume (CVd¼ CVg� CVN).
Similarly, the elastic model parameters for the equilibrated state,
JII and JHH, are related to the rubbery bulk and shear moduli while
the quantities, JIII and JHHHH, are related to their dependencies on
strain. The deviatoric strain is defined as usual by

H devh

�
H � 1

3

�
H : I

�
I
�

(8)

The double-valued relaxation functions, f(t,s), can be replaced by
the typical single-valued relaxation functions as described in



Fig. 1. The Hencky strain is almost identical to the integrated unrotated rate of
deformation tensor in a simple shearing deformation to engineering strains of 100%.
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Appendix B of Ref. [1]. While the derivation of Eq. (7) proceeded
simply and accurately predicted a variety of responses for glassy
polymers, the resulting expression is quite lengthy, which we feel
impedes its acceptance and application. We show in the next
section how it can be greatly simplified without loss of predictive
accuracy.

3. Simplification of the PEC model

Derivation of the Cauchy stress from the Hencky strain unfor-
tunately requires in Eq. (6) calculation of both a logarithmic strain
measure and a fourth-order transformation tensor. While clearly
defined and theoretically accurate, this is admittedly complicated
and a bit clumsy. In the first simplification, the Hencky strain rate
has been approximated by the unrotated rate of deformation
tensor, d ,

d h
1
2

�
U �1$

d U

dt
þ

d U

dt
$ U �1

�
(9)

where U is the stretch tensor obtained from the decomposition of
the deformation tensor into its rotation and stretch components,
F ¼ R $ U . Since d cannot be integrated to obtain a true strain
measure, this approach is by definition an approximation. For
deformations, however, along principle axes, li, only, such as the
standard compressive and tensile tests as well as free expansion, d
and d H =dt produce identical results. In the ‘‘1’’ direction, for
example,

d11 ¼
dH11

dt
¼ dl1

l1 dt
(10)

While they differ in more complex modes of deformation, even
here the difference is negligible at what would be considered
extremely large strains for glassy systems as seen in Fig. 1 in
a simple shearing deformation.

While d can be substituted for the Hencky strain rate to
approximate the conjugate Hencky stress, s H, a transformation to
the Cauchy stress is still required, which previously required
a cumbersome fourth-order tensor. Examine more closely the
approximation to s H employing the rate of deformation tensor d in
Eq. (7a). Name this approximate stress s d.

s d ¼

2
4Kd

Zt

0

ds fv
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t* � s*
�dI1

ds
� Ld
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0
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þ
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n
T � Tref

oi
I þ 2GN 3 dev (11)

where the integrated rate has been called, 3 , its first invariant, 3 : I ,
is I1, and the moduli and coefficients of thermal expansion are
assumed to be constants thereby allowing direct use of the physical
quantities rather than the model prefactors (e.g., Kd rather than J1).
The rate of work is independent of the strain measure used so

dW
dt
¼ 1

rref
S :

d G

dt
¼ 1

r
s : D ¼ 1

r
s H :

d H

dt
z

1
rref

s d : d (12)

Using the definition of the rate of deformation tensor, D,

D ¼ R $ d $ R T (13)
the relationship between the true Cauchy stress, s , and the
approximate conjugate stress, s d, can be derived.

1
r

s : D ¼ 1
r

s :
h

R $ d $ R T
i
¼ 1

r
s d : d so

s ¼ r

rref
R $ s d$ R T (14)

Advantages of constitutive equations directly employing d were
advocated by Flanagan and Taylor [11].

Since deformations along principle axes only involve no rota-
tions, definition of the Cauchy stress using Eq. (14) will produce
predictions identical to the PEC model using the Hencky strain. By
avoiding use of the logarithmic strain, calculations of stress avoid
derivation of the modal matrix and the fourth-order trans-
formation tensor and require only a relatively standard decompo-
sition of the deformation tensor into its rotation and stretch
components. In fact, most commercial finite element codes
perform this task automatically for the user.

In the next simplification, the dependencies of the moduli and
coefficient of thermal expansion (both glassy and rubbery) in the
stress equation were minimized to only those proven to this point
important for predictive accuracy. The bulk moduli do depend on
temperature and density; however, the density dependences are
unimportant for most calculations (only becoming relevant in shock
applications) and will be eliminated in SPEC. The shear moduli also
depend on temperature and could depend on strain through the
second invariant. The strain dependence of the glassy shear modulus
is required to produce hardening past yield, which is typically not
severe. It has been eliminated in the following discussion noting that
it could be re-introduced if necessary. The strain dependence of the
rubbery shear modulus has not proven important at modest strains
(<20%). The coefficients of thermal expansion were allowed to
depend on both temperature and density in the PEC model; the
volume dependences were suppressed in SPEC since the two effects
are similar except again in shock applications.

Another simplification minimized the number of required
relaxation functions. In general, four unique relaxation functions
are allowed characterizing volumetric (bulk, enthalpy, and CTE)
and shear responses. In previous parameterization of unfilled and
filled thermosets as well as unfilled thermoplastics using the PEC
model, all volumetric relaxation spectra were quite similar while
the shear relaxation spectrum was noticeably different. SPEC will
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therefore employ only two independent spectra, one volumetric
and one shear. The stress equation using these first three simplifi-
cations now becomes

s ¼ r

rref

2
4KdðTÞ
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dsfv
�

t*�s*
�dI1

ds
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Zt
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(15)

The most important simplifications, however, resided in re-defi-
nition of the potential energy, which, as seen in Eq. (7b) is quite
complex. In general, the potential energy is composed of both first
and second-order expansion terms. It was tempting to keep only
the first-order terms, which would result in gross simplification.
However, it was necessary to keep the second-order deviatoric
shear term since it accelerates relaxation rates in response to
applied stresses and strains; predictions of nonlinear creep and
yield require this term, and without it, the theory mimics a free
volume or configurational entropy model, which is rigorously
incapable of predicting yield or nonlinear creep in compression. For
consistency with the previous simplifications, only the temperature
dependence of the model parameters and two relaxation functions
were used. The potential energy is now approximated by

EpotzEpot
ref �
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Tref
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The simplifications leading to Eq. (16) were quite severe, and it is
therefore doubtful that the prefactors of the potential energy
obtained directly from experimental data would yield accurate
predictions. A more reasonable path would let these prefactors be
adjustable constants whose values are close to the theoretical
quantities. This final simplification was key to enabling crisp
parameterization from limited characterization tests. The potential
energy now becomes
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The term containing the equilibrium shear modulus has also been
neglected since GN is much smaller than the Gd as have the pre-
factor temperature dependences. Since CVd and Ld are intrinsically
negative quantities, the constants, Ei, are positive. The viscoelastic
shift factor can then be rewritten as
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since I1 is approximately aNDT in free expansion. C1 and C2 are the
well-known WLF coefficients, while C3 and C4 are new clock
constants describing the dependence of relaxation times on volume
and applied deformations. C3 will produce a change in the apparent
glass transition temperature with pressure and C4 will produce
yield.

Eq. (18) exactly reproduces the historical WLF equation in
equilibrated free expansion. When the polymer falls out of equi-
librium as it cools below the nominal glass transition temperature
in free expansion, Eq. (18) is still applicable since it contains
viscoelastic integral terms that naturally reproduce the experi-
mentally observed ‘‘leveling-off’’ of the shift factor. Most interest-
ingly, Eq. (18) accelerates relaxation times by the ‘‘C4’’ term in the
quantity ‘‘N’’, which is the key to engineering calculations by
enabling prediction of yield, nonlinear creep, and other important
mechanical responses.

For complete clarity, the simplified potential energy clock (SPEC)
model equations required to calculate stresses in glassy polymers
are collected below.

s ¼ r

rref

2
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�
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where

t* � s* ¼
Zt

s

dx
aðxÞ and log a ¼ � C1N

C002 þ N
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Remember that terms, Xd, are defined as the difference of the glassy
and rubbery values, Xg� XN. The relationship between the double-
valued shear relaxation function, fs(t,s), and the typical single-
valued, shear stress relaxation function, fs(t), can be seen clearly by
expanding both in a Prony series.

if fsðt; sÞ ¼
P
k

ake�t=sk e�s=sk

then fsðt;0Þ ¼
P
k

ak e�t=sk hfsðtÞ
(21)

While still somewhat complicated, Eq. (20) is now well within
reach of anyone serious about predicting the complex responses of
glassy polymers. We will show in the next section, that the corre-
sponding parameterization procedure is also well within typical
laboratory capabilities.
4. Parameterization of the SPEC model

The ten parameters and two functions required by Eq. (20) are
collected in Table 1.

All but two of the constants, C3 and C4, are standard inputs to
linear viscoelasticity. The bulk moduli can be determined by
pressure dilatometry, ultrasonic techniques, or measurements of
Poisson’s ratio in tension. The shear moduli are easily obtained
from commercial rheometers as are the two WLF coefficients and
the shear relaxation spectrum. The CTEs are easily obtained from
commercial thermomechanical analyzers. Temperature depen-
dencies for all parameters are mild enough to allow representa-
tion by a simple linear relationship. The SPEC model parameters
can be estimated by extraction from the raw data, but further
refinement is suggested by using the model to predict the results
of these simple lab tests. This is especially useful for determining
the glassy model parameters where the lethargic viscoelastic
relaxations can interact with intrinsic temperature dependencies.
These computationally modified parameters will typically be
Table 1
Parameters required by the constitutive equation.

Symbol Definition

KN(T) Temperature-dependent equilibrium bulk modulus
Kg(T) Temperature-dependent glassy bulk modulus
LN(T) Temperature-dependent product of KN and the equilibrium CTE, aN(T)
Lg(T) Temperature-dependent product of Kg and the glassy CTE, ag(T)
GN(T) Temperature-dependent equilibrium shear modulus
Gg(T) Temperature-dependent glassy shear modulus
C1 First WLF coefficient
C002 Related to the second WLF coefficient by C002 ¼ C2½1þ C3aref

N �
C3 Determined by the pressure dependence of Tg

C4 Parameter accelerating relaxations by applied deformations
fv(t) Volumetric relaxation spectrum
fs(t) Shear relaxation spectrum
slightly different from those obtained by simple extraction from
raw data.

The new clock constant, C3, defines the response of relaxation
rates to isothermal volume changes. We have found that C3 is
most easily determined by performing a simple model calculation
in which a pressure jump is applied above the nominal (i.e.,
atmospheric pressure) glass transition temperature, the sample is
cooled, and the change in Tg in response to the applied pressure is
determined. It appears from literature data that the change in Tg

with pressure for polymers is roughly 0.2–0.4 �C/MPa [5,12].
Therefore, C3 is simply chosen to reproduce this result. Remember
that its value should be close to

C3z
Tref

h
Kref

g aref
g � Kref

N aref
N

i
rref

h
Cref

pg
� Cref

pN

i (22)

where the measurable constant pressure heat capacity has replaced
the constant volume heat capacity of Eq. (19).

This leaves only one parameter, C4, and the volumetric relaxa-
tion function, fv(t) yet undetermined. As in the PEC model,
a stretched exponential form for the volumetric relaxation spec-
trum will be used in the SPEC model. This assumption is not
required.

fvðtÞ ¼ exp

"
�
�

t
sv

	bv
#

(23)

Parameterization of this relaxation function therefore requires only
two parameters, sv and bv.

Numerous paths could be suggested for obtaining these
remaining three parameters (C4, sv, and bv). As in the PEC model,
the volumetric spectrum could be obtained by modeling the
temperature-dependent CTE as it cools from the equilibrated state
through the glass transition and then heated back to the equili-
brated state. It is difficult, however, to perform this test on ther-
moplastics. Likewise, it could be obtained from a similar procedure
using the heat capacity, although this would require one to code the
SPEC entropy following the same approach as outlined above and
parameterize the glassy and rubbery constant volume heat
capacities.
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rref
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o
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#
(24)

While not difficult, it may be unnecessary since the parameter C4

requires some glassy mechanical test such as yield. It may be easier
simply to measure the compressive yield stress at different
temperatures and optimize C4, sv, and bv to match these data. Creep
data might be even better since time dependence is gathered as
well, but these tests are typically more difficult and time
consuming to perform. If the temperature-dependent compressive
yield stresses are used, one wonders about uniqueness and
parameter sensitivity. This question will be addressed in the next
section. Remember that the value of C4 should be close to the
corresponding PEC value



Fig. 2. Comparison of PEC and SPEC predictions and data for thermal expansion.
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where again the measurable constant pressure heat capacity has
replaced the constant volume heat capacity of Eq. (19).

The parameterization of C4 highlights an intrinsic difference
between the SPEC and PEC models. In the PEC model, the clock
faithfully represents the potential energy of the system, and all
parameters in the clock originate from linear viscoelastic quanti-
ties. Therefore, no nonlinear tests are required to parameterize the
PEC model, such that predictions of nonlinear response (e.g., yield
and creep) arise from a model with no adjustable parameters. The
fact that the PEC predictions agreed with data over a broad range
of tests with no adjustable parameters suggested that the
underlying physics appeared correct. With the assumptions made
in the SPEC model, the parameters in the simplified clock are no
longer exactly derived from linear tests, and nonlinear tests (albeit
simple yield tests) are required for model parameterization. We
feel that this is a small price to be paid for enabling a much
simpler constitutive equation and greater flexibility in testing and
parameterization. Moreover, the underlying physics (a clock
depending on potential energy) have not be abandoned but
simply approximated.
5. Comparison of the PEC and SPEC models

In Ref. [5], an unfilled epoxy (DGEBA/DEA with nominal Tg of
70 �C) was fully characterized and used for PEC model validation
tests. Predictions of the SPEC model for this epoxy will now be
compared to the data and previous PEC model predictions using all
parameters from the PEC model except for C3 and C4. This
comparison will provide a fair assessment of the severity of the
assumptions used in deriving the SPEC model. The new SPEC
parameters, C3 and C4, were determined as suggested in the
previous section; C3 came from a fit of the pressure dependence of
Tg, and C4 came from a fit of the temperature-dependent
compressive yield stress. The approximate values of C3 and C4

derived from the PEC model and shown in Eqs. (22) and (25) are
given in Table 2 as ‘‘previous PEC values’’. While the stretched
exponential relaxation exponents (b1, b2, b3) for the bulk modulus,
Table 2
SPEC model parameters for the DGEBA/DEA epoxy.

Parameter SPEC values used Previous PEC values Units

Tref 75 75 �C
KN(Tref) 3.2 3.2 GPa
dKN/dT �12 �12 MPa/�C
Kg(T) 4.9 4.9 GPa
dKg/dT �12 �12 GPa/�C
aN(Tref) 600 600 ppm/�C
daN/dT 0.4 0.4 ppm/�C2

ag(Tref) 170 170 ppm/�C
dag/dT 0.2 0.2 ppm/�C2

GN(Tref) 4.5 4.5 MPa
dGN/dT 0 0 MPa/�C
Gg(Tref) 0.75 0.75 GPa
dGg/dT �4.2 �4.2 MPa/�C
C1 16.5 16.5 –
C2 54.5 54.5 �C
C3 1000 1000 �C
C4 8000 11,800 �C
sv 6 6 s�1

bv 0.24 0.24 –
ss 0.12 0.12 s�1

bs 0.22 0.22 –
CTE, and heat capacity respectively in the PEC model were identical,
the corresponding characteristic relaxation times varied slightly
(6 s for the mechanical relaxation times, s1 and s3, but 20 s for the
heat capacity relaxation time, s4). The mechanical value of 6 s was
used for the SPEC predictions. Parameters used in the PEC and SPEC
models are shown in Table 2.

SPEC predictions on four tests detailed in Ref. [5] are shown in
Figs. 2–4: the temperature-dependent coefficient of thermal
expansion (Fig. 2), the temperature-dependent compressive yield
stress (Fig. 3), the difference between tensile and compressive yield
at a constant temperature (also shown in Fig. 3), and the temper-
ature-dependent viscoelastic shift factor at different isobaric
conditions (Fig. 4). The symbol sizes in these plots give a rough
estimate of the errors associated with the tests. The SPEC model
predictions reproduce the PEC predictions using all PEC parameters
except C4 (which was slightly reduced), thereby validating the
merit of the simplifying assumptions. The only difference seen in
the predictions lies in the temperature dependence of the
Fig. 3. Comparison of PEC and SPEC predictions and data for the temperature
dependence of compressive yield and for the difference between tensile and
compressive yield at one temperature.



Fig. 4. Comparison of PEC and SPEC predictions and data for the temperature and
pressure dependence of Tg.

Fig. 6. Creep data and predictions at 23 �C after a slow cool from 100 �C.
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viscoelastic shift factor below Tg under pressure. This difference
could exhibit itself, for example, in the glassy yield stress under
pressure, but no data exist to distinguish between the predictions.
6. New creep predictions of the SPEC model

A series of tensile creep tests at 55 and 23 �C were performed in
the present study using the same DGEBA/DEA epoxy (nominal Tg of
70 �C). Two vastly different cooling profiles were used to probe
physical aging effects. The dogbone samples (5.1 mm� 12.7 mm
cross-section and 57 mm gauge length) were cooled from 100 �C
(well above Tg) at rates of 0.5 or 200 �C/min by either cooling in the
curing mold as the oven was switched off or by quenching on a cold
metal plate. The samples were then transferred to the Instron and
tested after a 5 min thermal equilibration time. Both cooling rates
were determined by thermocouples located on sample surfaces.
While the slower cooling rate measurements were accurate, the
faster cooling rates should be viewed as approximate. The faster
profiles were not linear, difficult to measure accurately, and might
have even produced thermal gradients within the sample.
Fig. 5. Comparison of SPEC predictions and data for tensile yield at 23 �C for two
different cooling histories.
Therefore, the predictions for the slower cooling rates should be
viewed quantitatively while the predictions for the quenches
should simply be close to the experimental data. Samples were
displaced at a constant rate of 5 mm/min using an Instron 1125,
screw-driven load frame to determine the tensile yield stresses at
room temperature. Displacements were measured with an exten-
someter directly attached to the dogbone. For creep tests at both
test temperatures, the stresses were ramped to the required value
in less than one minute, held for 2 h, and if failure did not occur
during that period, the stress was released and creep recovery was
monitored for another 2 h. Data and predictions for the 23 �C yield
response for the different cooling histories are shown in Fig. 5. The
creep data are presented in Figs. 6–9. The predictions for the 23 �C
tests using the SPEC model with parameters listed in Table 2 are
shown in Figs. 6 and 7 as well.

The raw creep data themselves are interesting and deserve
some discussion. First, three out of four experimental creep
compliances at 55 �C after a slow cool superpose without any time
shifting. This suggests that, even though the applied loads
approached the measured tensile yield stress at that temperature
(roughly 35 MPa), the response is essentially linear viscoelastic.
Fig. 7. Creep data and predictions at 23 �C after a fast quench from 100 �C.



Fig. 8. Creep data at 55 �C (lines) after a slow cool from 100 �C.
Fig. 10. Attempts at construction of creep master curves from the data at 23 �C (lines)
were unsuccessful.
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That is, the applied stresses are insufficient to produce noticeable
acceleration of the relaxation rates at that temperature. At 23 �C,
the raw compliances no longer overlap. Older studies in the
literature [13] suggested that creep data could be superposed by
time shifts dependent upon the applied stress, while more recent
studies [14] suggested that master curves could not be con-
structed. Attempts at master curves for the 23 �C data are shown
in Fig. 10. While the two curves at the lowest applied stresses
approximately superpose, superposition fails at the higher applied
stresses. More interestingly, the shapes of the creep compliances
at 23 �C shown in Fig. 10 for the families of samples cooled slowly
or quickly are quite distinct.

From a viscoelastic perspective, one would expect superposition
of all creep curves (i.e., at all strains and cooling histories) if the
polymers were rheologically simple (all relaxation times depending
on the same quantities) and if stress accelerated relaxation times (a
‘‘stress clock’’). In the SPEC model, however, it is not stress exactly
that accelerates relaxation rates but the potential energy of the
sample. In particular, it is the last term in Eq. (20b) that is
responsible for faster decay under applied loads. This last term, in
general, involves the double-valued relaxation function, which was
represented by a specific form, Eq. (21), in SPEC that reduced it to
the more familiar single-valued relaxation function. If instead
Fig. 9. Creep data at 55 �C (lines) after a fast quench from 100 �C.
a multiplicative representation for the double-valued relaxation
function were used, a stress clock would result
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where J2
dev is the second invariant of the deviatoric stress tensor.

Interestingly, the multiplicative split is not allowed since it allows
negative dissipation rates [15]. This does not imply, however, that
a stress clock is strictly disallowed; it simply means that the
potential energy term in question cannot be reduced to the second
invariant of the stress tensor. A different model altogether might
allow a stress clock. On the other hand, remember that the
Table 3
SPEC model parameters used to fit creep data.

Parameter New creep values PEC values Units

Tref 75 75 �C
KN(Tref) 3.2 3.2 GPa
dKN/dT �12 �12 MPa/�C
Kg(T) 4.9 4.9 GPa
dKg/dT �12 �12 GPa/�C
aN(Tref) 600 600 ppm/�C
daN/dT 0.4 0.4 ppm/�C2

ag(Tref) 170 170 ppm/�C
dag/dT 0.2 0.2 ppm/�C2

GN(Tref) 4.5 4.5 MPa
dGN/dT 0 0 MPa/�C
Gg(Tref) 0.9 0.75 GPa
dGg/dT �4.2 �4.2 MPa/�C
C1 16.5 16.5 –
C2 54.5 54.5 �C
C3 1000 1000 �C
C4 11,800 11,800 �C/Pa
sv 6 6 s�1

bv 0.14 0.24 –
ss 0.12 0.12 s�1

bs 0.22 0.22 –



Fig. 11. Creep at 23 �C after a slow cool from 100 �C using new parameters.

Fig. 13. Creep at 55 �C after a slow cool from 100 �C using new parameters.
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molecular dynamics simulations indicated molecular mobility is
a unique function of potential energy, so perhaps the stress clock is
not rigorously correct.

Now examine the predictions for the 23 �C creep data in Figs. 6
and 7. It is obvious that the SPEC (or equivalently PEC) predictions
are not accurate enough. The trends and shapes are correct but
quantitative comparison is lacking. Since previous predictions were
accurate, one wonders if model re-parameterization could result in
better predictions, how different these new parameters might be,
and what the effect would be on previous predictions. For example,
examination of Figs. 6 and 7 indicate that a slightly larger glassy
shear modulus (a simple linear parameter) would improve the fits
by lowering the compliance at the end of the stress ramp (roughly
0.7 s). A set of new SPEC parameters derived from fitting the creep
data are shown in Table 3 and compared with the PEC parameters
from Table 2. The glassy shear modulus was, as suggested, slightly
increased, and the only other property requiring adjustment was
the exponent describing the volumetric stretched exponential
Fig. 12. Creep at 23 �C after a fast quench from 100 �C using new parameters.
distribution of relaxation times, bv. Note that the value of C4 that
best fit the creep data was increased back to the PEC value (the SPEC
value in Table 2 was 8000). Remember that the three distinct non-
shear relaxation spectra of the PEC model were collapsed to a single
‘‘volumetric’’ relaxation spectrum in the SPEC model. For the epoxy
system used in this study, the PEC exponents of these three spectra
were identical but the relaxation times were different. Perhaps the
need for a broader exponent in the SPEC volumetric relaxation
spectra (SPEC 0.14 vs. PEC 0.24) is a penalty for reducing the
number of relaxation functions. However, since the creep predic-
tions are adequate with a single relaxation function and the
assumption eases parameterization considerably, this simplifica-
tion has been retained. The ordinates in Figs. 11–14 comparing data
with predictions have been changed to strain instead of compliance
so that recovery after creep can be shown as well.

The creep predictions for all tests are now in much better
agreement with the experimental data. The worst agreement is
seen at 55 �C for a fast quench (Fig. 14). The fast quench thermal
history is approximate as discussed previously, and this uncertainty
will manifest itself most severely in this test. While the magnitudes
of strain recovery after creep are accurate, the numerical strains
Fig. 14. Creep at 55 �C after a fast quench from 100 �C using new parameters.



Fig. 15. Comparison of SPEC predictions and data for thermal expansion using new
parameters.

Fig. 17. Comparison of SPEC predictions and data for the temperature and pressure
dependence of Tg using new parameters.
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predicted during recovery differ in some tests from experiment
since the strain at the end of creep is too high (for example, 59 MPa,
slow cool, 23 �C). It is apparent that predictions of creep response
are much more sensitive to model parameterization than predic-
tions of yield, which is unfortunate since creep tests are more time
consuming to perform. Moreover, both the experimental creep
response and theoretical predictions are very sensitive to the
cooling history, which implies it must be monitored carefully
during the tests and modeled accurately in the nonlinear visco-
elastic formalism.

The predictions shown previously in Figs. 2–5 are changed only
slightly when the new creep parameters are used (Figs. 15–18). In
Fig. 15, there is some broadening in the transition of volume with
temperature caused by the decrease in value for bv. The compres-
sive (Fig. 16) and tensile (Fig. 18) yield predictions actually
improved significantly.
Fig. 16. Comparison of SPEC predictions and data for the temperature dependence of
compressive yield and for the difference between tensile and compressive yield at one
temperature using new parameters.
7. More complicated predictions of the SPEC model

More complicated PEC model predictions were presented in
Ref. [7], and a couple of them will be revisited here using the SPEC
model. While the tests are described fully in Ref. [7], they are
somewhat involved, so a brief description will be repeated here. In
the first test [16], the compressive yield stresses of an epoxy
quenched to temperatures 5–20 �C below Tg (roughly 87 �C for this
system) were measured as a function of aging time. The yield
stresses increased with aging time and then leveled off at aging
times that depended on test temperature. In the second test [17],
the volumes of two polycarbonate samples (different suppliers
with Tg roughly 141 �C) were monitored during a tensile stress
relaxation test at room temperature. After the initial increase in
volume due to the tensile ramp, the volume decreased during the
hold eventually decreasing even below the value of the unde-
formed sample. Since these test results were extracted from the
literature, none of the polymers were characterized. Instead, SPEC
model predictions used parameters for the DGEBA/DEA epoxy
obtained from fitting creep data (Table 3) with the Tg (or Tref) shifted
Fig. 18. Comparison of SPEC predictions and data for tensile yield at 23 �C for two
different cooling histories using new parameters.



Fig. 19. Data [16] and SPEC predictions for the dependence of the viscoelastic shift
factor as a function of aging time.

Fig. 21. PEC and SPEC predictions for shear and normal stresses in a simple, one
element shear deformation.
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to match the experimental systems. Therefore, precise agreement
with the data should not be expected. Rather, these more compli-
cated tests show the ability of the model to reproduce complex
response: physical aging during both yield and creep tests, and
coupled mechanical response (tensile stress and volumetric strain).
Since the PEC model predictions qualitatively matched the experi-
mental results in Ref. [7], these tests also offer another opportunity
to validate the simplifying assumptions made in deriving the SPEC
model. SPEC predictions are compared with experimental data in
Figs. 19 and 20.

As explained in Ref. [7], it is not surprising that the volume
strain in Fig. 20 decreases below the value prior to application of
the tensile strain, Vo. Even prior to the tensile test, the volume is
lethargically decreasing toward its equilibrated value. The volume
increases with application of the tensile strain (i.e., Poisson’s ratio)
but will still decrease with time as it tries to reach the equilibrated
value. At some point during the test, the volume could certainly
decrease below the value at the start of the experiment yet still be
far from its equilibrated value.

Another, more complicated challenge for the model lies in
prediction of the second-order normal stresses in shear deforma-
tions. To assess first any effects from the simplifications made in
Fig. 20. Data [17] and SPEC predictions for the volume change during a tensile test.
deriving the SPEC model, a simple shear deformation was imposed
on a block of DGEBA/DEA epoxy cooled to 23 �C. Volumetric
incompressibility was enforced in the finite element simulation by
solving a one element problem in which the separation between
the upper (moving) and lower (stationary) faces was fixed and the
four nodes on both of these faces maintained their absolute spac-
ings. For fair comparison of the SPEC assumptions, the PEC and
SPEC parameters of Table 2 were used since they are almost iden-
tical. As seen in Fig. 21, normal stresses are generated, the yy normal
force in the material at small strains is compressive (i.e., the
material is pushing up on the fixed upper plate), all normal forces
become tensile after yield, and the predictions from the two models
are very similar.

Experimental data on normal forces in glassy polymers are
extremely rare, and most of these studies used a rod geometry in
which the shear strain varies with the radial position making clear
interpretation difficult. One study was uncovered that used tubes of
polymethylmethacrylate (PMMA) with an inner diameter of
2.54 cm and outer diameter of 3.81 cm (i.e., a wall thickness
of 0.635 cm) [18]. While not exactly ‘‘thin’’ tubes, this geometry
does minimize the variation in strain across the sample. The
separation between the top and bottom faces was again held fixed,
the polymer was adhered to both of these faces, and the bonded
Fig. 22. Data and SPEC predictions for shear and normal forces in torsion of a tube of
PMMA at 23 �C.
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area was held constant throughout the test. Stresses on the sample
faces perpendicular to the z-axis were zero, and repeating
boundary conditions were applied to the faces perpendicular to the
x-axis thereby simulating an infinitely long sample (approximating
the experimental torsional geometry). The PMMA was approxi-
mated using DGEBA/DEA properties from Table 3 (optimized with
creep data) with a reference temperature shifted from 75 �C to
100 �C, so comparison with data should be viewed qualitatively.
The experimental data and SPEC predictions for a ramp test at 23 �C
are shown in Fig. 22, where the shear and normal ‘‘stresses’’ are
defined as the total force acting on a surface divided by the surface
area. Note also that the normal stress within the material is nega-
tive whereas the reported ‘‘normal stress’’ in Ref. [19] is positive.
This difference arises from viewing either the stress in the material
or the reaction force on the experimental equipment. Normal
stresses in polymers are compressive giving rise to the ‘‘rod
climbing’’ effects seen in polymeric liquids.

Even with the approximations made in modeling the test
geometry and parameterization of the material, the agreement
between predictions and experiment is interesting.
8. Conclusions

The potential energy clock model presented and validated in
previous papers was greatly simplified. It can now be readily
implemented and parameterized by researchers and engineers
interested in the nonlinear viscoelastic phenomena of glassy
polymers such as yield, nonlinear creep, and physical aging. The
simplified potential energy clock still rests on the assumption that
all polymer relaxation rates depend uniquely on the system
potential energy, which has been verified by molecular dynamics
simulations. Predictions of the simplified potential energy clock
model were shown to agree well with both the full potential energy
clock model and a wide range of experimental data. It is the only
model available for glassy polymers that has been shown to
reproduce such a wealth of complex responses, and it can be
implemented in commercial finite element codes as a user
subroutine.
Numerous engineering problems can now be attacked with this
model. Examples include prediction of stresses and strains on cool-
down from cure (addressing the ‘‘stress-free’’ question), from
volumetric relaxations in aging polymers, during creep of load-
bearing members, and upon yield around complex geometries in
real components (complex tensorial loading). The utility of the
model lies in its ability to predict consistently and quantitatively
phenomena of importance to practical problems. In addition, the
model can be used to enable new perspectives on old research
topics in glassy polymers. Examples include cohesive failure
(cracking), adhesive failure (de-bonding) failure, filler micro-
mechanics, and instabilities. Finally, the approach has already been
extended to reacting systems for epoxy cure simulations [19] and is
being extended to orthotropic systems for fiber-reinforced polymer
composite predictions.
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